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Relative Risk Regression Analysis of
Epidemiologic Data
by Ross L. Prentice*

Relative risk regression methods are described. These methods provide a unified approach to a range of
data analysis problems in environmental risk assessment and in the study of disease risk factors more
generally. Relative risk regression methods are most readily viewed as an outgrowth of Cox's regression
and life model. They can also be viewed as a regression generalization of more classical epidemiologic
procedures, such as that due to Mantel and Haenszel.

In the context of an epidemiologic cohort study, relative risk regression methods extend conventional
survival data methods and binary response (e.g., logistic) regression models by taking explicit account of
the time to disease occurrence while allowing arbitrary baseline disease rates, general censorship, and
time-varying risk factors. This latter feature is particularly relevant to many environmental risk assess-
ment problems wherein one wishes to relate disease rates at a particular point in time to aspects of a
preceding risk factor history. Relative risk regression methods also adapt readily to time-matched case-
control studies and to certain less standard designs.
The uses of relative risk regression methods are illustrated and the state of development of these

procedures is discussed. It is argued that asymptotic partial likelihood estimation techniques are now well
developed in the important special case in which the disease rates of interest have interpretations as
counting process intensity functions. Estimation of relative risks processes corresponding to disease rates
falling outside this class has, however, received limited attention. The general area of relative risk regres-
sion model criticism has, as yet, not been thoroughly studied, though a number of statistical groups are
studying such features as tests of fit, residuals, diagnostics and graphical procedures. Most such studies
have been restricted to exponential form relative risks as have simulation studies of relative risk estimation
procedures with moderate numbers of disease events.

Introduction
One of the most important developments in biosta-

tistics in recent years has been the evolution of regres-
sion methods for "failure" time data. In epidemiology,
failure may refer to the diagnosis of a certain disease
or to death from the disease. Primary interest typically
centers around the relationship between individual
characteristics or exposures and subsequent disease in-
cidence or mortality.

In a cohort study, a group of subjects is selected from
a population of interest and followed forward in time
for disease occurrence. Both baseline characteristics or
exposures, and characteristics or exposures measured
during follow-up, may be of interest as disease risk fac-
tors. Such information will be referred to as the sub-
jects' covariate history.
A cohort study is often too long-term and expensive

to be feasible particularly for exploratory studies ofrare
diseases. A case-control design involves the monitoring
of a large population for disease occurrence followed by
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a retrospective ascertainment of covariate histories.
Such ascertainment takes place both for a representa-
tive sample of cases of disease and for a suitably selected
disease-free, or control, group. Case-control design
strategies often involve some degree ofmatching of con-
trols to cases in respect to potential "confounding" var-
iables that may otherwise obscure the relationship be-
tween covariates of primary interest and disease
occurrence.
The ideas of case-control sampling can also be useful

in the context of a cohort study. Specifically, cases of
disease arising in a cohort may be compared to a subset
of the disease free group in the cohort in order to avoid
the assembly of covariate histories on the entire cohort.
Such an approach is useful, for example, in the exploi-
tation of a serum bank, since biochemical or viral ana-
lysis of stored sera on every cohort member may be
prohibitively expensive. More generally a "synthetic"
case-control analysis of a large cohort data set may be
considered strictly for computational reasons.
A hybrid "case-cohort" design in which covariate his-

tories are assembled only for a preselected subcohort
and for cases developing disease may give rise to further
cost saving in the context of certain types of cohort
studies.
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Regression Analysis of Cohort Data
Regression Models

Disease occurrence data in a cohort study takes the
form of a random time variable T for each subject. Typ-
ically T will be defined as time from entry into the cohort
until disease occurrence, though other time specifica-
tions, such as age at disease occurrence, may be more
natural in some applications. The time variate T will
usually be subject to right censorship, as the subject
may be without disease at the cut-off time for data an-

alysis or may be lost to follow-up. Suppose initially that
each subject has a fixed covariate vector z describing
baseline characteristics or exposures under study, along
with auxiliary data, for example, on potential confound-
ing factors. The probability distribution for an abso-
lutely continuous T can be equivalently described by its
density, its survivor or distribution function, or by its
(instantaneous) disease rate function

X(t;z) = lim pr(t - T < t + At T - t,z)/At

The disease rate, or hazard rate, function is a con-

venient representation for modeling purposes since it
is natural to think in terms of disease rates and varia-
tions in disease rates over the follow-up course of a
cohort study. Conventional parametric models, such as
exponential and Weibull regression models, specify a

hazard rate function of the form

A(t;z) = XO(t)r(xP) (1)

where XO(-) and r( ) are fixed functions, x = x(z) is a

row vector consisting of functions of z, and ,B is a cor-
responding column vector to be estimated. An expo-

nential regression model is characterized by a Xo(t)
while the XO(-) function is a power function of time in a

Weibull regression model. Since the ratio ofhazard func-
tions at any two z-values is independent of t, the class
(1) is sometimes referred to as the proportional hazards
model. For uniqueness one requires r(O) = 1 so that
r(x,) = X(t;z)/X(t;zO), where zo is a "standard" covariate
vector giving rise to x(zo) = 0. Since r(x,) is the ratio
of the failure rate at a general covariate vector to that
at a standard vector it is often referred to as the relative
risk function. Very often the relative risk function will
be taken to be of exponential form, r( ) = exp(-), but
other forms such as r(-) = 1 + (-) may be more useful
in some applications.

In many epidemiologic risk factor problems estima-
tion of the relative risk is of primary interest, while the
baseline disease rate function XO(t) = X(t;zo) can be
thought of as a nuisance parameter. A major advance
in the theory of failure time regression took place when
Cox (1) discovered that estimation of the regression
parameter P could conveniently take place without plac-
ing any restrictions on the baseline hazard function XO(*).
Based on a cohort giving rise to distinct failure times

at tl, . . . ,td on subjects with respective regression vec-
tors xl,.... ,Xd, Cox argued that standard asymptotic
likelihood formulae could be applied to the function

d d

UPO = 11 [r{xi}ll r>xl} = H Lj(p)
i=l Ife (ti) i=i

(2)

where R(t) denotes the set of subjects at risk for disease
at t-, for estimation of the relative risk parameter P.
Under independent failure times and independent cen-
sorship (see below) the i-th factor in Eq. (2) is precisely
the probability that failure occurs on the subject with
regression vector xi, given the risk set R(ti) and given
that exactly one failure is observed at ti. Since the fac-
tors in Eq. (2) are dependent, special justification is
required to show that Eq. (2) could be manipulated as
an ordinary likelihood function, at least as far as asymp-
totic inference is concerned. Kalbfleisch and Prentice
(2) showed L(,) to have a marginal likelihood interpre-
tation. Cox (3) introduced the notion ofpartial likelihood
which not only encompasses Eq. (2) but also a range of
important related functions arising from generalizations
of the class of models (1). The fact that Eq. (2) is a
partial likelihood function implies, very generally, that
the score statistic

d d

U(P) = a log L(r)/33 = ;a log Li()/a = UA(W)

is such that each Ui(p) has mean 0 and conditional var-
iance estimated by -_2 log Li (p)1a12, and that score
statistic components Ui(p) and Uj(I) are uncorrelated,
i :L j. The partial likelihood structure then sets the stage
for central limit theory to show n( - ) to converge
in distribution to a normal variate with mean vector
zero and with variance matrix estimated by nI-[] =
-n{a2 log L ()Ia'2}-1, where n is the cohort size and
a is the maximum partial likelihood estimate defined by
U(,B) = 0. Formal asymptotic convergence results were
developed somewhat later, notably by Tsiatis (4).
Efron (5) and Oakes (6) showed that it is not possible

to improve on the efficiency of a provided Ao ( ) is com-
pletely unrestricted, and, equally important, that gen-
erally good efficiency properties obtain relative to the
maximum likelihood estimates from parametric sub-
models of (1), even relative to parametric models that
specify X, ( ) up to a single scale parameter.
With arbitrary Ao ( ), the sole restriction in the model

(1) is the relative risk specification r(x,B). The require-
ment that this relative risk be independent of follow-up
time may be unnecessarily restrictive in many appli-
cations; in fact, the change over time in the relative risk
associated with a certain characteristic or exposure may
be of considerable interest in some settings. For ex-
ample, one may be interested in latent periods and other
aspects of the temporal pattern of cancer relative risk
over time in the follow-up of cohorts exposed to ionizing
radiation or other carcinogens. The model (1) is readily
relaxed to allow a dependence of relative risk on time
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by setting

X(t;z) = XO(t)r{x(t)P} (3)

where the modeled regression vector x(t) now may con-
sist not only of functions of z but also of product terms
between functions of z and t. For example, with a single
binary z, r( ) = exp(-) and x(t) = (z, z log t) the relative
risk X(t;z = 1)/X(t;z = 0) is eN1t2 which is constant,
monotone increasing, or monotone decreasing according
to whether the coefficient 02 iS zero, positive, or neg-
ative. Based on Eq. (3), a partial likelihood function is
readily developed that differs only from Eq. (2) through
the replacement of xi and xl in the i-th factor of Eq. (2)
by xi(ti) and x1(ti), respectively, for i = 1, ... ,d.
To this point the regression model (3) presumes the

parametric modeling of a relative risk function that in-
cludes not only the characteristics or exposures of pri-
mary interest, but also the auxiliary variables in z that
may have been included, for example, to control con-
founding. Epidemiologic tradition, dating from the sem-
inal paper by Mantel and Haenszel (7), very much con-
centrates on the use of stratification to control
confounding or other potential biases.
The model (3) may be generalized to permit stratifi-

cation by writing

X(t,z) = Xo0(t) r{x(t)P8} (4)

where the population is divided into q strata, s E [1, .... ,q]
on the basis of z values, and baseline disease rates Xo,(-)
are allowed to differ arbitrarily among strata. Note also
that the regression parameter can be allowed to vary
among strata. A partial likelihood function for ,B =
(01, . . . ,Pq) is readily developed as

q dB
L(O3 n= H H [r{x8i(t81)18}I r{x,(ti)p8}] (5)

8=1 i=1 I 8 t8i)

where t.1, . .. ,tdS denote the distinct disease incidence
times in stratum s and RX(t) denotes the set of subjects
at risk in stratum s at t. A convenient approximation
(8) is available to accommodate tied disease times within
a stratum. Note also that stratum assignments may be
time-dependent, that is s = s(t,z), as a subject may
move from one stratum to another during the course of
follow-up.
Model (4) allows the data analyst the choice of strat-

ification or regression modeling for the control of con-
founding factors. It therefore allows one to avoid ex-
cessive stratification that sometimes poses a problem in
direct application of the Mantel-Haenszel technique,
and also avoids the unnecessary restrictions or unwieldy
regression models that may arise if Eq. (4) were used
without stratification. In short, Eq. (4) allows one to
extract the best from traditional epidemiologic methods
and modern failure time data methods. In large cohorts
with relatively rare disease occurrence there is evi-
dently little efficiency loss through a detailed stratifi-

cation on key confounding variables. Some further study
of this topic would be worthwhile.
The regression model (4) presumes a fixed baseline

regression vector z. An important aspect of a number
of large scale epidemiologic cohort studies, however, is
the periodic recording of risk factor and confounding
factor levels during the course of follow-up. Denote by
z(u) a covariate measurement pertaining to follow-up
time u and by Z(t) = [z(u);u < t] the entire covariate
history for a subject prior to time t. The disease rate
at time t may be defined as

X{t;Z(t)} = lim pr{t S T < t + At T - t,Z(t)}I/At

and a relative risk regression model

A{t;Z(t)} = Xo0(t) r{x(t)O} (6)

may be defined, where Xo0 ( ) is a baseline disease rate
for stratum s, x(t) = x[t,Z(t)] is a row regression p-
vector that specifies the dependence of disease rate on
risk factor histories under study, such that x(t) = 0
corresponds to a standard risk factor history, and by
convention r(0) = 1. Regression models in the class (6)
provide a flexible framework for a broad range of anal-
yses to relate risk factor levels and changes in risk factor
levels to subsequent disease incidence. A partial like-
lihood function for the estimation of ,B = (,... ,Bq) is
once again given by Eq. (5).

Illustrations
There are many examples of the use of Eq. (4) in the

literature. For example, Prentice et al. (9) apply Eq.
(4) to a cohort of over 18,000 mice receiving a single
time exposure to gamma radiation. The time-dependent
feature of the regression variable in Eq. (4) was used
to show that, for most cancer sites, the relative risk
associated with a specific radiation dose drops off mark-
edly as the animal's age.
For an illustration involving periodically measured

covariate values consider a cohort of nearly 20,000 res-
idents of Hiroshima and Nagasaki followed by the Ra-
diation Effects Research Foundation. Prentice et al.
(10) use data from this cohort to study the relationship
between serial blood pressure measurements and sub-
sequent cardiovascular disease incidence. Systolic and
diastolic blood pressure along with a number of other
cardiovascular disease risk factors and potential con-
founding factors were measured during the course of
biennial examinations, beginning in 1958. The analyses
described (10) make use of data on 16,711 subjects ex-
amined at least once during the time period 1958-74,
including 108 incident cases ofcerebral hemorrhage, 469
incident cases of cerebral infarction, and 218 incident
cases of coronary heart disease. Specific objectives of
their analysis concerned the relative importance of sys-
tolic and diastolic blood pressure as risk indicators for
the three major cardiovascular disease categories just
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mentioned, and the relative importance of blood pres-
sure levels from two or more biennial exam periods
before a risk period, given the blood pressure mea-
surements from the most recent examination period.
The application of relative risk regression methods de-
scribed (10) used model (6) with t defined as the ex-
amination cycle (i.e., t = 1 in 1958-60, t = 2 in 1960-
62,... with 32 strata defined on the basis of sex and 16
five-year age-at-baseline categories. The modeled
regression vector x(t) was taken to consist of systolic
and diastolic blood pressure levels in examination cycles
1, 2, ..., t- 1 or functions thereof. Naturally, in order
that x(t) be defined, it is necessary that certain preced-
ing examination have been attended and that the de-
sired blood pressure measurements have been taken.
In order to accommodate missing covariate data it is
necessary to assume that the set of subjects at risk in
examination cycle t with covariate history Z(t) are rep-
resented by the subset for whom the corresponding
x(t) value can be specified. This assumption is subsumed
in the independent censorship process described below.
In terms of the partial likelihood function (5), the risk
sets R8(t) consist only of those subjects under active
follow-up in stratum s for whom the modeled regression
vector x(t) can be derived from available covariate data.

Table 1 shows the results of relative risk regression
analyseswithr(@) = exp(), x(t) = [SBP(t - 1), DBP(t - 1)]
the systolic and diastolic blood pressure measurements
in examination cycle t - 1, and with common regression
parameters across strata (, 13). Note that previous
cycle diastolic blood pressure is the important disease
risk predictor for cerebral hemorrhage, while the cor-
responding systolic blood pressure is the more impor-
tant predictor for cerebral infarction and for coronary
heart disease. This observation has clinical implications
and provides insight into the three disease processes.

Table 2 gives results of analyses in which a sequence
of blood pressure measurements are related to subse-
quent disease incidence. The regression vector is now
defined as x(t) = [DBP(t - 1), DBP(t - 2), DBP(t - 3)]
for cerebral hemorrhage and x(t) equal to the corre-
sponding SBP values from the three preceding cycles
for cerebral infarction and coronary heart disease. Note
that for a subject to contribute to the risk set in ex-
amination cycle t, all three previous biennial examina-
tions need to have been attended. From Table 2 one can
note that the most recent systolic blood pressure mea-
surement is highly predictive of cerebral infarction risk,

while the next most recent makes some additional con-
tribution to risk prediction. With coronary heart dis-
ease, on the other hand, a recent elevated systolic blood
pressure measurement is not predictive, or is possibly
even negatively predictive, of risk given the levels of
SBP in the two preceding cycles. One possible expla-
nation for this result would be that hypertensive med-
ication brings about blood pressure control without a
corresponding reduction in coronary heart disease risk.
The analysis for cerebral hemorrhage indicates that
both elevated diastolic blood pressure and the duration
of elevation are strong risk predictors.
Most applications to date of relative risk regression

methods have presumed the exponential relative risk
form r( ) = exp( ). Thomas (11) and Prentice et al. (12)
use the linear form r( ) = 1 + (H) to examine the joint
dependence of certain cancer relative risks on radiation
exposure and other factors.

Table 3, from Prentice et al. (12), is based on data
from 40,498 subjects in a larger cohort monitored by
the Radiation Effects Research Foundation. These sub-
jects were surveyed at least once in the time period
1964-70 in respect to cigarette smoking habits and had
available (T65) total body radiation dose estimates. In
this analysis T is defined to be years since the subjects
first survey participation and Z(t) = 1ZI(t), Z2(t)] is (t)
defined to consist of radiation exposure information
Z1(t) and cigarette smoking data (cigarettes per day
and duration of smoking) Z2(t). The analysis also in-
volved 128 fixed strata defined on the basis of age at
radiation exposure (16 five-year classes), city, sex, and
survey date (before or after the end of 1966). Table 3
shows results of fitting both exponential form r(u) =
exp(u) and linear form r(u) = 1 + u relative risk models
with x(t) defined to include linear and quadratic terms
in T65 total dose estimate (truncated at 600 Rads), in-
dicator variables for four cigarettes per day categories,
and a single term involving both exposures defined as
the product of T65 dose (truncated) and a cigarette per
day variate that takes values 0 for nonsmokers, and
values 1 to 4 for the four cigarette per day categories
indicated in Table 3. The results given in Table 3 are
based on 1570 cancer deaths excluding hematologic can-
cers (which are apparently not smoking related) and
excluding short-term smokers with smoking durations
of between 5 and 20 years. Smokers of less than 5 years
duration were pooled with nonsmokers. The coefficient
of the product term [(T65 dose/100) x cig/day category]

Table 1. Relative risk regression of cardiovascular disease incidence in relation to previous examination cycle systolic and diastolic
blood pressure measurements. The analyses stratify on age and sex.

Regression variable Cerebral hemorrhage O( x 10') Cerebral infarction P( x 10O) Coronary heart disease (x 102)
SBP(t-1) 0.58 1.77 1.15

(0.30)*' (<0.0001) (0.003)
DBP(t-1) 5.48 0.46 - 0.46

(<0.0001) (0.36) (0.56)
Cases 92 406 187

'a values are maximum partial likelihood estimates.
b Asymptotic significance levels for testing 1 =0 are given in parentheses.
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Table 2. Relative risk regression of cardiovascular disease incidence in relation to blood pressure measurements from the three
preceding examination cycles. The analyses stratify on age and sex.

Regression variable Cerebral hemorrhage ,( x 102)' Cerebral infarction ( x 102) Coronary heart disease ( x 102)
SBP(t- 1) 1.13 -1.06

(0.001) (0.06)
DBP(t- 1) 3.23

(0.01)b
SBP(t - 2) 0.80 1.46

(0.03) (0.007)
DBP(t - 2) -1.07

(0.45)
SBP(t -3) 0.35 0.64

(0.30) (0.22)
DBP(t -3) 4.77

(<0.0001)
Cases 48 207 97

a Values are maximum pratial likelihood estimates.
bAsymptotic significance levels for testing ,B = 0 are given in parentheses.

is of particular interest. The significantly negative coef-
ficient in the exponential form regression indicates that
the relative risk corresponding to a joint exposure to
radiation and cigarette smoke is less than the product
of relative risks for the individual exposures. For ex-
ample, the estimated relative risk for a nonsmoker ex-
posed to 100 rads (T65) of radiation is exp{0.237 - 0.009}
= 1.25, the estimated relative risk for a long-term 20
cigarette per day smoker with no radiation exposure is
exp{0.565} = 1.76, while the estimated relative risk for
a long-term 20 cigarette per day smoker with 100 rads
of radiation exposure is exp{0.237 - 0.009 + 0.565 =
0.067(3)} = 1.81. This last number can be compared
with the estimate (1.25)(1.76) = 2.20 which would apply
under a multiplicative relative risk model. In good
agreement, the linear form relative risk model gives
estimates of 1 + 0.292 - 0.001 = 1.29 for a nonsmoker
exposed to 100 rads, 1 + 0.774 = 1.77 for a long-term
20 cigarette per day smoker unexposed to radiation,
and 1 + 0.292 - 0.001 + 0.774 - 0.094(3) = 1.78 for the

long-term 20 cigarette per day smoker with an esti-
mated 100 rads of exposure. This latter number may be
compared with a relative risk estimate of 1 + 0.292 -
0.001 + 0.774 = 2.06 which would apply under an ad-
ditive relative risk model. Table 3 thus implies that the
relative risk for all nonhematologic cancer among in-
dividuals exposed to both radiation and cigarette smoke
is less than a multiplicative model would imply and pos-
sibly less than additive as well. When a more thorough
account of age at radiation exposure is taken there,
however, ceases to be evidence against an additive rel-
ative risk model, but evidence for submultiplicativity
remains. Such analyses provide useful insights into the
carcinogenic mechanism in addition to their obvious
public health implications.

Distribution Theory
Rigorous distribution theory for the maximum partial

likelihood estimator and corresponding baseline disease

Table 3. Relative risk regression analyses of cigarette smoking and radiation exposure in relation to all nonhematologic cancer
mortality. Ex-smokers and smokers with duration of smoking between 5 and 20 years are excluded, while short-term smokers (<5

years) are pooled with nonsmokers.

Regression variable
T65 dose/100

(T65 dose/100)2

About 5 cig/day

About 10 cig/day

About 20 cig/day

About 30 cig/day

(T65 dose/100) x cig/day category

Maximized log likelihood
Cases

aMaximum partial likelihood estimate.
b Significance level for testing coefficient equal to zero.

Exponential form RR model
0.237a
(O.004)b
- 0.009
(0.59)
0.179
(0.16)
0.438

(<0.0001)
0.565

(<0.0001)
0.785

(<0.0001)
-0.067
(0.006)

- 10106.008
1570

Linear form RR model
0.292
(0.04)

-0.001
(0.99)
0.226
(0.16)
0.562

(<0.0001)
0.774

(<0.0001)
1.213

(<0.0001)
- 0.094
(0.05)

- 10105.898
1570
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rate estimators is given in Andersen and Gill (13). Their
work was limited to the exponential relative risk form,
a restriction removed by Prentice and Self (14). An
overview of these developments will be given here.

It is convenient to change notation slightly and to
assume a single stratum for notational ease. Denote the
n subjects in the cohort by i = 1, . . ., n. For the i-th
subject, define the counting process Ni(t) to take value
zero up to disease occurrence for subject i and value
one thereafter. Let the censoring process Yi(t) take
value one if the i-th subject is at risk at the time t and
value zero otherwise. Let zi(t) denote a covariate vector
for the i-th subject at time t. Denote by

Pt = {Ni(u),Yi(u),zi(u);u - t}

the counting, censoring and covariate data for the i-th
subject up to and including time t, and by Ft = [F,
.. , Ft'] the collection of such information on the cohort.
Assuming [Ft,t : 0] to form a right continuous family
of a-algebras, one can define the disease rate process
corresponding to the i-th subject at time t via

Xi(t;F,) =

lim lim pr[Ni(s + At) - Ni(s) = 1 F8](At)1
81t At4O

Two basic assumptions underlie the regression anal-
yses described above. An independent failure time as-
sumption among distinct study subjects requires

(7)

indicating that the disease rate at time t for the i-th
subject does not depend on data recorded for other
study subjects. An independent censorship assumption
requires further that

The probability that subject {i} develops disease at t.
given Ft-i and given exactly one disease occurrence at
ti, is easily calculated as

pr{i develops disease failure at ti and FJ
n

= Xi(ti Ft)lYkX{ti FtJ
n

= Yi(t) r{xi(ti)I}IlY1(t) r{x1(tO)P}

and, as before, a partial likelihood function for i is given
by

n n

L(i3) = H [r{xi(ti)I3}/ Y1(t)r{x1(ti)3}]i
i=l =

where ti is the observed follow-up time for subject i and
Bi indicates whether (bi = 1) or not (bi = 0) subject i was
observed to develop disease. In stochastic integral no-
tation one can write

log L(i) =
n r1 n

ffi l[log r{xi(t)I3} - log Y1(0r{x1(t)PJ1dNi(t)

where a finite follow-up period has been assumed.
The reason for introducing counting process and sto-

chastic integral notation in this context is to make use
of the counting process decomposition

Ni(t) = Ai(t) + Mi(t) i=l, . .. , n

where Mi is a locally square integrable martingale and,
under slight regularity (15), the cumulative intensity
process Ai relates to the above disease rate process via

ki(t;Ft-) = Yi(t) X{t;Zi(t)}, all (i,t) (8) ft

Ai(t)= o i(u;F,,-)du
indicating that at times t at which the i-th subject is at
risk {Yi(t) = 1} the disease rate is independent of the
subject's prior censoring history, where Zi(t) = {zi(u),
u < t}. This assumption requires the set of subjects at
risk at a given {t,Z(t)} to be representative of the sub-
population having these same {t,Z(t)} values. The rel-
ative risk regression modeling assumption now enters
upon setting

X{t;Z(t)} = Xo(t r{x#(t)I3}, all (i,t) (9)

Together Eqs. (7), (8), and (9) imply

Xi(t;Ft-) = Yi(t)ko(t)r{xi(t)p}

The disease rate process which has been modeled via
Eq. (10) as a relative risk regression model then has a
representation as a counting process intensity. This rep-
resentation allows convergence results for stochastic
integrals over martingales to be applied in order to de-
velop asymptotic convergence results for the maximum
partial likelihood estimate and related quantities. In
that convergence results for stochastic integrals with
respect to martingales require the integrand to be a
"predictable" process it is natural to require the pro-
cesses appearing in Eq. (10), namely the censoring pro-
cess Yi and the regression process xi, to have the sample
paths that are left continuous with right hand limits.
The principal results to arise from applying martin-
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gale convergence theory are: (i) n- a log L(3)Iap con-
verges in distribution to a normal variate with mean
zero and with variance matrix consistently estimated
by i== n-1 a2log L )Iap2; (ii) n½(1 -P) converges in
distribution to a normal variate with mean zero and with
variance matrix consistently estimated by t -; and (iii)
n(A - AO) converges to a certain Gaussian process,
where A is a natural estimator of the cumulative base-
line disease rate

Ao(t) = fxo(u)du

Without going into detail, sufficient conditions for
these convergences include a finite follow-up period, the
asymptotic stability of certain processes arising in log
L (A) and its first and second derivatives, a Lindeberg
condition, certain asymptotic regularity conditions and,
in order to accommodate regression forms other than
r(-) = exp(-), a regression positivity condition and a
condition to assure the asymptotic stability of the ob-
served information matrix. In spite of this rather
lengthy list these conditions are collectively quite un-
restrictive. For example, it is not necessary that
[Ni,Yi,zi] be independent and identically distributed.
Recently Gill (16) has given an informal and intuitive
presentation of this martingale approach.
An interesting technical point in this use of stochastic

covariates relates to the fact that the disease rate pro-
cess being modeled, namely Xi[t;Ft-], conditions on the
subject's entire preceding covariate history. Risk factor
associations of interest may, however, involve the re-
lationship between disease rate and a subset of the pre-
ceding covariate history. For example, Table 1 above
is concerned with cardiovascular disease rates in rela-
tion to previous blood pressure measurements, but only
blood pressure measurements recorded in the imme-
diately preceding examination cycle. An application of
the asymptotic results just mentioned to Table 1 would
then implicitly require one to assume disease rates to
be independent of earlier blood pressure measurements,
given the most recent measurements; an assumption not
substantiated by Table 2. To address this issue, Self
and Prentice, in a submitted manuscript, have gener-
alized the above results to allow aspects of preceding
covariate history to be excluded from the conditioning
at the division points of a time axis partition. The rel-
ative risk parameter is then chosen to maximize a
pseudo-likelihood function that is the product of partial
likelihoods over the elements of the time axis partition.
The maximum pseudo-likelihood function is identical to
that which would be obtained by specifying an oversim-
plified intensity process model that involves only se-
lected aspects of the preceding covariate history. An
adjustment is required, however, to give a consistent
variance estimator for this maximum pseudo-likelihood
estimator.

Generalizations and Current Status of
Relative Risk Regression Methods
The counting process formulation described above en-

compasses multivariate failure time data. Such a feature
may be useful, for example, in studying the epidemiol-
ogy of epileptic seizures or asthmatic attacks. Prentice
et al. (17) and Andersen and Gill (13) consider relative
risk regression models of the type

Xi(t;F,-) = X0o(t)r{x(t)38} (11)

which merely continue the intensity process modeling
for the i-th subject beyond the first failure time to the
times of second and subsequent failures. Note that in
Eq. (11) F,- will include the counting process histories,
including all preceding random failure times, for each
subject and that the stratification s = s(t) and regres-
sion variable may be defined to reflect aspects of the
subject's preceding failure time information. For ex-
ample, the subject may be required to move to the next
stratum whenever the subject experiences a failure.
Model (11) directly gives rise to a partial likelihood func-
tion to which the asymptotic results previously cited
apply. A second class of multivariate relative risk
regression models (17) can be written:

Xi(t;F,-) = Xo8(t - ti *)r{x(t)p.} (12)

where tt is the most recent random failure time on sub-
ject i prior to time t. This model also naturally gives
rise to a partial likelihood function provided the strat-
ification is fine enough to require the subject to enter a
new stratum each time the subject experiences a failure.
Formal asymptotic results for such estimation have
been given in certain special cases (18).
Competing risk generalizations of relative risk

regression models have also been described (19). Spe-
cifically, if m distinct disease categories may arise in a
follow-up study, a relative risk regression model

X{t,j;Z(t)} = X4(t) r{x(t)p

may be specified for the rate of disease j occurrence,
for selected values ofj e [1, 2, . .. , m]. Straightforward
partial likelihood estimation of the disease-j relative risk
regression parameter I3j proceeds by regarding disease
occurrences of types other than j as censored.
Some work (20) has also taken place to allow relative

risk regression parameter estimation and testing in the
presence of random measurement errors in the covar-
iate processes, a topic of obvious practical importance
in epidemiologic research.

In the context of occupational mortality data studies,
Breslow et al. (21) have considered the use of external
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mortality rate data, for example from vital statistical
records, in order to partially specify the baseline disease
rates ko,(-). In most applications such usage typically
turns out to provide little benefit in respect to estima-
tion efficiency, provided the baseline rates are allowed
to differ from the external rates by a scale factor. Such
external rates are, of course, indispensible if the cohort
is essentially homogeneous in respect to the covariate
histories of interest. See Breslow (22) for a discussion
of relative risk regression estimation in these circum-
stances.
To date there has been rather limited study of the

sample sizes and data configurations necessary to en-
sure a good approximation by the asymptotic distri-
butions mentioned above. Johnson et al. (23) describe
some simulation results pertinent to a fixed regression
vector and exponential form relative risk function.
A full regression approach, of course, requires not

only suitable model fitting and estimation procedures,
but also a range of procedures for model criticism. In
general the area of model criticism is at a rather early
stage of development for relative risk regression meth-
ods. Some relevant works include proposals in respect
to test of fit (24), residuals (25-28), regression diag-
nostics (29), and choice of relative risk form (11).

Relative Risk Regression for Time-
Matched Case-Control Studies
Suppose now that a large population is being moni-

tored for disease occurrence, perhaps by means of a
cancer registry or by a mortality index. It would often
be impractical to enumerate and collect covariate data
on such a large cohort, and furthermore since disease
rates are likely to be low the data on many of the in-
dividuals who do not develop disease in some defined
"follow-up" period will be largely redundant. The case-
control design provides a valuable and much used al-
ternative to the cohort design in such circumstances. A
time-matched case-control study would proceed by
matching each case that arises in some defined case
accession period to one or more control subjects who
are without disease at the time of case ascertainment.
Here time would usually refer to age, although other
specifications, including calendar time may be prefer-
able in some applications. The cases ascertained by the
disease surveillance system should be representative of
the cases arising in the population in respect to their
prior covariate histories, and controls selected should
be representative of the sub-population who are without
disease at the "time" of control ascertainment. Controls
may also be matched to cases in respect to other po-
tential confounding factors in which case the controls
corresponding to a specific case need only to be repre-
sentative of the disease free group in that stratum at
the time of case occurrence. Upon selection the covar-
iate histories Z(t) are ascertained retrospectively for
cases and controls, usually by personal interview. Here
t refers to the time of case occurrence. A major meth-

odologic concern relates to the ability to retrospectively
construct accurate covariate histories, and to do so
equally for cases and controls (recall bias), and the abil-
ity to sample randomly from case and control popula-
tions (selection bias). Assuming these concerns are met
a relative risk regression model (6) is readily applied to
case-control data (30,31). Specifically a suitable likeli-
hood function is again given by Eq. (5), where ts1,...
tsd are the times of case ascertainment in the s-th stra-
tum and Rs(tsi) consists only of the case occurring at t8i
along with its corresponding time- and stratum-matched
controls. The (s,i) factor of Eq. (5) can be derived as
the conditional probability that covariate history
Z,i(t,i), giving rise to the regression vector xM,(t8i), cor-
responds to the diseased individual, given the set of
covariate histories [Z1(t8i), 1 e R8(t8i)] and the fact that
R,(t,i) includes exactly one case. This assertion requires
an independent disease times assumption. Such an as-
sumption furthermore implies that the contributions to
Eq. (5) at distinct (s,i) are statistically independent,
since distinct individuals are involved at each (s,i), so
that Eq. (5) has a conditional likelihood interpretation.
It follows that standard asymptotic likelihood methods
can be expected to apply to Eq. (5), under time-matched
case-control sampling, under mild conditions (32). Note
that, under model (6), covariate histories need be as-
sembled only to the point of permitting x(t) to be spec-
ified at the time of occurrence for a case, or at the time
of the corresponding case occurrence for a matched con-
trol.

Synthetic Case-Control and Case-
Cohort Designs

Consider again the cohort study discussed above. Par-
tial likelihood estimation based on Eq. (5) can be com-
putationally intensive especially with large cohorts and
time-dependent regression variables. Consequently a
number of authors (31,33-37) have suggested the im-
position of case-control sampling on the cohort for com-
putational reasons. This idea involves replacement of
the denominator in each (s,i) factor of Eq. (5) by a sum-
mation over a set that includes only the subject devel-
oping disease at t.,i disease and a comparison group ran-
domly selected from Rj(tj.) In many situations selection
of as few as five "controls" per case will yield regression
parameter estimates of high efficiency (e.g., 80% or
more) compared to a full cohort analysis, though Bres-
low et al. (21) indicate that twenty or more controls per
case may be necessary to ensure good efficiency in the
presence of large relative risks and unbalanced regres-
sion variable distributions.
The synthetic case-control approach is a useful aid to

the data analyst in the exploration of a large cohort data
set. Not only might risk sets in Eq. (5) involving several
thousand subjects be replaced by sets involving only 10
or 20 subjects, but also only a single fixed regression
vector x(t) needs to be stored for each subject selected.

Equally important, the synthetic case-control ap-
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proach gives the possibility of considerable cost saving
in relative risk estimation in circumstances wherein as-
sembly of key covariate data requires expensive syn-
thesis of specimens or other raw materials that have
been collected and stored during the course of a cohort
study. For example, a number ofprominent cohort stud-
ies and disease prevention trials have developed blood
serum banks on large numbers of participating subjects.
The use of these serum samples, for example to relate
biochemical factors to subsequent disease incidence,
may, however, be prohibitively expensive. The syn-
thetic case-control design allows efficient relative risk
estimation based on serum analyses for cases and a small
number of time-matched controls. A full cohort analysis
on the other hand would typically involve a much larger
number of serum analyses.
The synthetic case-control design does not, however,

appear to be the most efficient approach to this type of
estimation problem. In particular, a given subject could
properly serve as a control for a number of cases arising
at times during the subject's risk period. The synthetic
case-control approach, however, rather arbitrarily links
a specific control subject to a single case. Prentice has
proposed (38) a case-cohort design to avoid this limi-
tation. In such a design a subcohort is randomly selected
from the entire cohort to serve as comparison group for
all cases arising during follow-up. The sampling can be
relaxed to allow different sampling fractions among
baseline defined strata.

Estimation can then be based on Eq. (5) with the risk
set R,8(t8i) replaced by a set that consists only of the
case occurring at t5i and the subcohort risk set at t-Si.
It follows that covariate histories need be assembled
only for cases and subcohort members. With the risk
sets modified as just mentioned standard asymptotic
likelihood formulae can evidently be applied to Eq. (5)
with a modification to the score statistic variance to
accommodate a correlation among score statistic con-
tributions within a stratum. Specifically, the score sta-
tistic contribution at t8i will typically be weakly corre-
lated with score statistic contributions at t,j, j<i
whenever the disease occurrence at t5i arises outside
the selected cohort.

This work was supported by grants GM-24472, GM-28314 and CA-
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are identical to subsets of a manuscript by R. L. Prentice and V. T.
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posium on Biomedical Systems Modeling, North Holland, Amster-
dam.
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